Sunday, August 14, 2016

Offshore wind is more powerful than realized previously.

11 August 2016
University of Delaware (click here) researchers report in a new study that offshore wind may be more powerful, yet more turbulent than expected in the North Eastern United States.
The findings, published in a paper in theJournal of Geophysical ResearchAtmospheres, could have important implications for the future development of offshore wind farms in the U.S., including the assessment of how much wind power can be produced, what type of turbines should be used, how many turbines should be installed and the spacing between each....
It is about the math.
Authors: Cristina L. Archer, Brian A. Colle, Dana L. Veron, Fabrice Vernon and Matthew J. Sienkiewicz
First published: 9 August 2016
The marine boundary layer of the northeastern U.S. (click here) is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003–2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013–2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with new instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s−1all year round, highest winds in winter (10.1 m s−1) and lowest in summer (7.1 m s−1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not....