Saturday, December 06, 2008

Loblolly pine responds to mechanical wounding with increased resin flow


Jonathan J. Ruel, Matthew P. Ayres, and Peter L. Lorio, Jr.
Abstract: The oleoresin produced by many conifers has a deleterious effect on numerous associated herbivores, including bark beetles (Coleoptera: Scolytidae), and may have evolved as a plant defense mechanism. Three experiments with juvenile loblolly pine (Pinus taeda L.) used mechanical wounding to drain resin reserves and assess the effects of prior bark wounding on subsequent resin flow up to 7 days post-treatment. Resin flow returned to pre-treatment values within 2 days after wounding began and, in nearly every tree in each experiment, continued to increase on subsequent days. On average, resin flow reached double the pre-treatment values (mean ± SE: 2.10 ± 0.10 vs. 1.13 ± 0.10 g/3 h and 2.28 ± 0.09 vs. 0.90 ± 0.09 g/3 h for wounded vs. pre-treatment in experiments 1 and 2, respectively). Considering its timing and magnitude, this previously undescribed response may be important in modulating interactions between pine trees and bark beetles. In addition, resin flow following treatment was greater in trees in larger crown size classes (thinned > edge of stand = unthinned in experiment 1; edge of stand > thinned > unthinned in experiment 2). This may help explain why trees in thinned stands are less susceptible to southern pine beetle (Dendroctonus frontalis Zimm.) infestation than trees in unthinned stands.